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Abstract 

 
The performance of existing recognition algorithms for binary phase shift keying (BPSK) and 
quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise 
ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is 
proposed in this study. First, the power spectrum of the squared candidate signal is truncated 
by a rectangular window. Thereafter, the graph representation of the truncated spectrum is 
obtained via normalization, quantization, and edge construction. Based on the analysis of the 
connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of 
the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, 
we prove that the SD is a Schur-concave function with respect to the probability vector of the 
vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, 
and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition 
performance under low SNRs and computational complexity. As it is confirmed that the 
proposed method reduces the computational complexity of existing graph-based algorithms, it 
can be applied in modulation recognition of radar or communication signals in real-time 
processing, and does not require any prior knowledge about the training sets, channel 
coefficients, or noise power. 
 
Keywords: Graph representation, Modulation recognition, Majorization inequality, Phase 
modulation signal, Schur concavity 
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1. Introduction 

In digital receivers, modulation recognition of radar or communication signals is an 
indispensable intermediate link between signal detection and demodulation. Modulation 
recognition is extensively used in both military and civilian fields [1, 2]. In military 
applications, such as electronic reconnaissance, modulation recognition is a critical 
prerequisite for obtaining parameters of the enemy radars; whereas in civil applications, such 
as cognitive radio, modulation recognition is one of the key tasks in spectrum sensing. 
Moreover, in intelligent communication systems based on 5G/6G technology, modulation 
recognition is an indispensable step in facilitating the assistance of artificial intelligence (AI) 
[3]. 

Existing modulation recognition algorithms can be divided into two categories: likelihood-
based (LB) and feature-based (FB) algorithms [1]. LB algorithms require a prior information 
of the signals and channel coefficients, and can attain optimal performance in the Bayesian 
sense. However, their computational complexity is relatively high. In practice, LB algorithms 
cannot be realized when the signal parameter space is complex. By contrast, the FB algorithm, 
which depends on the mechanism of feature engineering, has relatively lower computational 
complexity. The FB algorithm can be further divided into two sub-classes: data-driven-based 
(DDB) [4-6] and model-driven-based (MDB) [7] algorithms. Generally, the feature 
engineering mechanism of DDB is based on machine learning or deep learning frameworks 
[8-10], and it depends on vast labeled training samples. However, in non-cooperative contexts, 
such as electronic reconnaissance, it is difficult to obtain training samples. Moreover, another 
problem encountered by DDB algorithms is that accurate estimation and matching of SNR 
will cause computational fatigue and difficulty in training. The modulation recognition 
algorithms based on MDB feature engineering include the following: time-frequency analysis 
[11], higher order cumulant [12], distribution fitting test [13], and cyclostationarity test [7]. 
However, most of them depend on time series analysis framework. 

Recently, a novel graph-based signal processing tool for time series signals was proposed. 
Accordingly, graph-based signal detection and modulation recognition were initially 
investigated in [14, 15]. Those algorithms aimed to transform a time series, such as the samples 
in the time or frequency domains, to a graph with several vertices points and edges, and then 
extract graph features to detect [14] or recognize signals [16]. From the perspective of feature 
engineering, graph-based modulation recognition algorithms can be divided into two 
categories: machine learning-based algorithm and features-based algorithm. In [17], a graph-
based modulation recognition algorithm based on Kullback–Leibler divergence was proposed. 
The features were defined using the elements in the adjacency matrix of the graph, and 
optimized by feature selection to decrease redundancy. In [16, 18], the fractional low-order 
cyclic spectrum and generalized second-order cyclic spectrum of the received signals under α-
stable noise were utilized as the inputs fed into the signal-to-graph convertor (SGC), 
respectively; the features of the constructed graph were extracted based on their adjacency 
matrices. Accordingly, classifications were performed by checking the distance between the 
features extracted from the training sets and those extracted from the testing sets. However, 
the aforementioned approaches severely rely on a large amount of labeled training samples. 

Another category of recognition algorithms based on the completeness of graphs has been 
proposed. In [19], nonlinear transform of the spectra of phase modulation signals, i.e., the 
quadratic spectra and fourth power spectra were selected as the inputs fed to the SGC. 
Subsequently, recognition was performed by detecting the completeness of the graph. Inspired 
by [19], it is easy to formulate BPSK/QPSK modulation identification based on checking the 
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completeness of the graph generated from the modified power spectrum of candidate signals. 
The modified power spectrum can be obtained by eliminating several large magnitude lines in 
the spectrum of the squared signal. In particular, the order of computational complexity of 
those algorithms is of 2O( )N  , where N   denotes the length of the samples. The 
computational costs increase significantly even with a moderate sample size, which is 
unfavorable to real-time processing applications. Moreover, the performance of graph-based 
algorithms degrade under low SNRs. Hence, it is vital to investigate the novel signal 
representation framework and develop a new signal modulation recognition algorithm. 

In this study, to improve the performance under low SNRs and reduce the computational 
complexity of existing graph-based algorithms, we propose a BPSK/QPSK signal modulation 
recognition algorithm based on the feature, i.e., sum of degree (SD). First, the truncated power 
spectrum of signal squaration (SS) was transformed to a graph, and then the SD of the graph 
was extracted as a feature to classify BPSK and QPSK signals. Based on the simulation results, 
the proposed algorithm performs well under low SNRs, and has better preferable behavior in 
terms of computational complexity and robustness, compared with existing graph-based 
algorithms. Moreover, the proposed algorithm can function effectively without any prior 
knowledge about the training sets, channel coefficients, or noise power. 

The innovative contributions of this study are as follows: 
1) Based on the majorization inequality theory, we prove that the average SD of a graph is 

a Schur–concave function of the probability vector of the vertex (PVV). The PVV represents 
the distribution of a quantized samples on each vertex. Accordingly, the connectivity of the 
graph that transformed from random sample sequences can be explained by comparing the 
majorization relationships between different random sequences distributions. 

2) We introduce an efficient BPSK/QPSK recognition algorithm using the SD features of 
the graphs. The sample size of the random signal fed to the SGC is decreased by truncation, 
which reduces the computational cost. Moreover, the SD feature is robust to the influence of 
truncation; thus, yielding outstanding performance under low SNRs. 

3) Extensive simulations are conducted to evaluate the effectiveness of the proposed 
algorithm. Additionally, compared with existing graphed-based algorithms, the proposed 
algorithm exhibits superior performance in balancing computational complexity and 
recognition performance under low SNRs. 

The remainder of this article is organized as follows. Signal mode and the basis of the graph 
transformation is described in Section Ⅱ. The proposed algorithm based on SD is presented 

in Section Ⅲ, and the simulation results are presented in Section Ⅳ. Finally, conclusions are 

drawn in Section Ⅴ. 

2. BACKGROUND 

2.1 Signal mode 

The model of the candidate signals can be expressed by 
0( ) ( ) ( ) exp( [2 ( ) ]) ( ),0 1, 0,1i ix n s n w n A j f n t d n w n n N iπ π θ= + = ∆ + + + ≤ ≤ − = ,    (1) 

where 0 ( )s n  represents the BPSK signal, 1( )s n  represents the QPSK signal, ( )id n  denotes 
the phase encoding functions of the signals, i.e., 0 ( ) {0,1}d n =  for BPSK, and 1( ) {0,1,2,3}d n =  
for QPSK. A  indicates the amplitude, N  indicates the sample size, 0f  denotes the carrier 
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frequency, t∆   symbolizes the sampling interval, θ   signifies the initial phase, and ( )w n  
represents complex additive white Gaussian noise (AWGN) with zero mean and a variance of 

2
02σ ; it is uncorrelated to the signal ( )is n . 

The identification of the modulation mode of BPSK/QPSK signals can be formulated via 
the following binary hypothesis test: 

H0：The candidate signal is BPSK. 
H1：The candidate signal is QPSK. 

2.2 Basic of SGC 

 Fig. 1. Framework of SGC. 
 

As shown in Fig. 1, the transformation of a random sequence ( )Y k  to a graph ( , )Y Y YG E V can 
be divided into three steps: normalization, quantization, and graph construction [15]. Notably, 
the random sequence can be expressed in the original time domain signal or other 
transformation domains. Details of the three steps are as follows. 

Step 1: Normalization. The random sequence ( )Y k  is normalized in the range [0,1], and 
can be expressed as 

min

max min

( ) ( )( ) , 0,1,..., -1
( ) ( )Y

Y k Y kN k k = N
Y k Y k

−
=

−
,                       (2) 

where max ( )Y k   and min ( )Y k   represent the maximum and minimum values of ( )Y k  , 
respectively. 

Step 2: Quantization. For a given quantization level 0N  , ( )YN k   can be uniformly 
quantized by, 

( ) 1YQ k i= + ,                               (3) 

if 0
0 0

1) ,0 1Y
i iN k i NN N

+≤ < ≤ ≤ −（  for 0,1,..., 1k = N − . 

Step 3: Graph construction. A graph { , }Y Y YG E V=  can be constructed from ( )YQ k ,where 
1 2{ , ,... }Y qV v v v=   represents the vertices set and ,{ | , }Y Y YE e V Vα β α βν ν= ∈ ∈  represents the 

edges. The detailed scheme is as follows: trace the amplitude transitions from ( )YQ k   to 
( +1)YQ k ; two vertices are connected when there is a level jumping between vα  and vβ , i.e., 

, 1eα β = ; otherwise, the two vertices are not connected, i.e., , 0eα β = . 
Following that, two crucial terms involved in transforming modulation signals to graphs are 

given below. 
Definition 1. PVV: For an independently identically distributed (i.i.d.) random sequence 

( )YY f y ,which is transformed to a graph by SGC. The number of vertices of the graph is 
given by 0N . Here, PVV is defined as 

01 2( , ,..., )T
Np p p=p ，where 

Normalization Quantization Graph
Construcion

Y(k) GY(EY,VY)NY(k) QY(k)
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0( ) / , 1, 2...,i i Yp I G N i N= =                          (4) 
where ( )i YI G  represents the total number of quantized samples located in the thi  vertex on 
graph YG , and N  indicates the sample size of random sequence ( )Y k . 

Definition 2. Partial sum of PVV: Let 

01 [ ]
,1p i i

S p i N
Ω

Ω

=
= ≤ ≤ Ω ≤∑ ,                       (5) 

as the partial sum of PVV, i.e., p , considering the former Ω  items, where [ ]ip  denotes the 

decreasing rearrangements of the PVV, i.e., 
0[0] [1] [ ]( , ,..., )T

Np p p↓ =p . 
According to Definitions 1 and 2, under the 0H  assumption, the PVV is denoted by p , 

and the partial sum is [ ] 01
,1p ii

S p i N
Ω

Ω

=
= ≤ ≤ Ω ≤∑ . However, under the 1H  assumption, the 

PVV is set as q , and the partial sum items is [ ] 01
,1q jj

S q j N
Ω

Ω

=
= ≤ ≤ Ω ≤∑ . The partial sum 

of PVV can be used to compare the randomness of the probability vectors [20], that is, if 
p qS S
Ω Ω
> , it follows that 

q p ,                                 (6) 
indicating that q  is majorized by p , implying that q  is more random than p . 

According to [14], for a particular distributed random sequence, its probability distribution 
and PVV determine the connectivity of the graph, and also partly determines the probability 
of the random sequences being transformed to a complete graph. 

3. PROPOSED ALGORITHM 

In this section, we first analyze the factors that degrade the performance and increase the 
computational complexity of existing graph-based modulation recognition algorithms [15, 19]. 
Consequently, a novel algorithm based on SD is presented, which has a better performance in 
low SNR and a lower computational complexity．The key adjustments include: 1) the input 
fed to the SGC is the truncated SS (TSS) other than SS itself. 2) the feature extracted to 
discriminate the modulation signals is the SD of the graph. Indeed, truncation can reduce the 
input sample size of SGC, thereby reducing the processing complexity of the graph conversion. 
Moreover, extracting the SD feature relies on linear operation; hence, it avoids eigen 
decomposition of the Laplacian matrix of the graph, thereby reducing the computational 
complexity further. In addition, the SD feature can also improve the recognition performance 
owing to its robustness and excellent discriminability. A diagram that summarizes this 
algorithm is shown in Fig. 2. 
 

Fig. 2. Framework of the proposed algorithm. 
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3.1 Conventional graphs-based modulation recognition algorithm  

Existing graph-based modulation recognition algorithms rely on the detection of the 
completeness of the graph [15, 19], where the modified spectrum of squared signal (MSS) is 
utilized as an input fed to the SGC. In the MSS, about 3~5 spectrum lines around the maximum 
of the SS are set to zero. Accordingly, the SNRs of the input fed to the SGC significantly 
decreases owing to the modification, resulting in energy loss and performance deterioration. 
In addition, the sample size of the input signal for SGC mainly decides its computational 
complexity. The main computational complexities of SGC are roughly listed in Table 1. 

 
Table 1. Main computational complexity of SGC. 

Operation of SGC 
Real number 

addition times 
Real number 

multiplication times 
Decision or 

comparison times 

Normalization N  N  0 

Quantization 0 0 0NN  

Graph Construction 0 0 ( 1) / 2N N −  

As indicated in Table 1, for a sample size N , the total computational complexity of SGC 
is up to 2O( )N  . When N   is large, the computational complexity increases rapidly. 
Consequently, we attempted to solve the problem of balancing the recognition performance 
and operating time cost by modifying the input fed to SGC, and developed novel graphical 
feature, i.e., SD, to classify the BPSK and QPSK signals.  

3.2 Graphical characteristics analysis of SS 

First, we analyzed SS and its graphical transformation characteristics. 
Definition 3. SS: We define the observed signal in time domain as ( )x n , and the power 

spectrum of the squared signal is given by  
2 2( )=(|DFT[ ( )]|) , =0,1,... 1Y k x n k N − .                          (7) 

The SS of BPSK/QPSK signals are plotted in Fig. 3. Here, the coding scheme of the BPSK 
signal is [1,1,1,1,1,0,0,1,1,0,1,0,1], and that of the QPSK signal is [0,1,2,3,1,3,1,3,1,3,2,1,0], 
with the sampling interval 0.01t∆ =  µs, carrier frequency 0 20.76f =  MHz, code width 

640cT = ns, sample size 1024N = , initial phase 4θ π= , and SNR = 2 dB. 
It is evident that after squaring, a BPSK signal becomes a sine wave with a single frequency 

of 02 f . Accordingly, its spectrum is a line spectrum along with the random noise spectrum. 
However, after the squaration, a QPSK signal becomes the BPSK signal, and its spectrum 
consists of the mixture of the narrow-band spectra and the random noise spectrum [7]. 
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Fig. 3. SS of modulation signals: (a) BPSK and (b) QPSK. 
 

Definition 4. SD of a graph: For a simple undirected graph ( , )Y Y YG E V , if its degree vector 

is denoted as 
01 2( , ,..., )T

Nd d dd = , then its SD is defined by 
0

1

N

i
i

F d
=

= ∑ .  

Note that if the number of edges of the graph ( , )Y Y YG E V  is defined as K , then SD can be 
expressed as 2F K= . Thus, it can be deduced that SD is a linear function of the total number 
of edges of graph, and the relevant conclusions about the total number of edges of graph still 
apply to SD. 

Proposition 1. (Schur–concavity of the expected number of total edges on the graph 
constructed from i.i.d. random sequences) 

Considering an i.i.d. random sequence of sample size N  that is converted into a simple 
undirected graph ( , )G E V . The expected number of edges on the graph can be approximated 
by [14] 

0 0 0

1 1 1,

1( ) 1
p NN N N

i
i ip

δ

δ
δ β βδ

ϕ ω
= = = ≠

  
 = −  
   

∑∑ ∑p ,                       (8) 

which is Schur–concave with respect to PVV 
01 2( , ,..., )T

Np p p=p . 
Proof. Let 

0 0

0
1 1,

1( ) 1 , 1,2,...,
p NN N

i
i i

N
p

δ

δ δ
β βδ

φ ω δ
= = ≠

  
 = − = 
   

∑ ∑p

,
               (9) 

equation (8) can be rewritten as  
0

01 2
1

( ) ( ) [ ( ), ( ),..., ( )]
N

Nhδ
δ

ϕ φ φ φ φ
=

= =∑p p p p p .                   (10) 

According to the Proposition B .1 in [20] (Ch. 3. Page 88-89), if 0( ),  1,2,...,= Nδφ δp  is 

Schur–concave and 
0

1
( )

N

h δ
δ

φ φ
=

= ∑   represents an increase on N  , then ( )ϕ p   is Schur–

concave. Subsequently, equation (9) can be further rewritten as  
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0 0 0 0 0

1 1 1 1 1

1( ) 1 1 [1 (1 ) ]
p N p NN N N N N

p N
i i

i i
p p p

p

δ δ

δ
δ δ δβ β β

β β βδ

φ ω ω
= = = = =

            = − − = − − = − −          
             

∑ ∑ ∑ ∑ ∑p

.

                    

(11) 
Its first order derivate can be derived as 

0
1

0
1

[1 (1 ) ]( )
(1 ) , 1,..., .

p NN
p Np

p N p N
p p

δ

δβδ
δ β

ββ β

φ
δ−

=

∂ − −∂
= = − =

∂ ∂∑p                (12) 

Accordingly, it follows that  

1 2
1 2

1 1
1 2 1 2

( )

=( ) [(1 ) (1 ) ] 0p N p N

p p
p p

p p p N p pδ δ

δ δ

δ

φ φ

− −

 ∂ ∂
− − ∂ ∂ 
− − − − ≤ .

                 (13) 

Because the function δφ  is symmetric and differentiable with respect to 0, 1,...,ip i N=  and 
(13) is not greater than zero, the function δφ  is Schur–concave [20, 21], which means that 

( )ϕ p  is Schur–concavity. 
Remark: Proposition 1 implies that for an i.i.d. random sequences to be converted into 

simple graphs with a specific number of the vertices, the total number of edges of the graphs 
increases with the increasing of randomness of PVV. Consequently, for two random sequences 
drawn from different distributions, with the same sample size and the number of the vertices, 
the randomness of the PVV determines the connectivity of the generated graph, i.e., determines 
the value of the SD. The more random the PVV is, the denser the connectivity of the generated 
graph is, and the larger the corresponding SD value is. 

The partial sums under the two hypotheses are plotted in Fig. 4. Here, the numbers of the 
vertices on graphs are set as 0 10N = . It can be observed that the inequality p qS S

Ω Ω
>  holds, 

indicating that the PVV q   is majorized by p  ; thus, q   is more random than p  . In 
particular, the connectivity of the constructed graph under H1 is greater than that under H0 
because q p . Accordingly, the total number of edges of the graph constructed under H1 is 
more than that under H0. It can be utilized as a discriminate feature to differentiate BPSK and 
QPSK signals. 
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Fig. 4. Partial sums of PVVs for BPSK and QPSK signals. 
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(a)                                (b) 

Fig. 5. Graphs constructed from SSs of (a) BPSK and (b) QPSK signals. 
 

Fig. 5 illustrates the graphs constructed from SSs of BPSK and QPSK signals. It can be 
observed that the graph generated from a BPSK signal is an isolated graph with SD of 2, 
whereas that generated from a QPSK signal is a giant connected graph with the SD of 38. This 
reveals a distinct difference between the two graphs in terms of connectivity. The phenomenon 
verifies the above-mentioned conclusion, where the randomness of the PVV determinates the 
connectivity of the generated graphs. 
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Fig. 6. Means of SD under two hypotheses. 

 
Fig. 6 shows means of SDs under the two hypotheses versus SNR, where 1000 trials 

simulations were performed under each hypothesis. It can be observed from the figure that the 
average SDs under the two hypotheses differ distinctly. For H0, the range of the average SD 
varies from 2 to 25, whereas for H1, it varies from 35 to 75. In addition, with the increase of 
SNR, the average SD decreases and approaches a fixed value. It is because with the same SNR, 
the PVV under H1 is more random than that under H0; thus, the average SD value under H1 is 
significantly greater than that under H0. 

3.3 Influence of TSS on connectivity of the graph 

In this study, the necessary preprocessing was conducted before the SGC, including the 
calculation of the TSS. The purpose of calculating SS is to convert BPSK and QPSK signals 
into single frequency sine waves and BPSK signals, respectively. This technique can provide 
a basis for extracting more separable and stable features in the graph-based classification 
algorithm. In addition, the truncation operation can reduce the length of the samples fed to the 
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SGC, thereby reducing the computational complexity. In this case, the computational 
complexity is 2O( )D  , where D   denotes the length of the truncated signals ( D N<<  ). 
Similarly, when the original SS is used to construct a graph, the computational complexity is 

2O( )N , which results in more operating time than 2O( )D . 
Definition 5. TSS: We define the TSS as 

max max( ) 0 1
( ) 2 2

0
TSS

D DY k k k k N
Y k

otherwise

 ≤ − ≤ ≤ + ≤ −= 


，

，

,                   (14) 

where maxk   represents the position of the peak of ( )Y k  . In particular, the truncation is 
equivalent to adding a rectangular window on SS. 

Subsequently, the influence of the graphical connectivity on the truncation will be evaluated 
via simulations and the majorization theory. Fig. 7 presents the TSS under two hypotheses, 
where the window width 100D =  . Evidently, the main lobe of the SS is reserved after 
truncation. In particular, TSS of the BPSK signal contains nearly one large line spectrum, 
whereas that for QPSK contains several large line spectra in the bandwidth. 
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    Fig. 7. TSS of (a) BPSK and (b) QPSK. 

      
(a)                               (b) 

Fig. 8. Graphs generated from TSS of (a) BPSK and (b) QPSK. 
 

Fig. 8 illustrates the graphs generated from the TSS of BPSK and QPSK signals. It can be 
observed that under the two hypotheses, the graph structure retains its natural characteristics, 
which is similar to those in Fig. 5. 
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Fig. 9. Means of the SDs of the graphs constructed from TSS. 

 
Fig. 9 depicts the average SDs of the graphs constructed from TSS. In total, 1000 trials were 

performed for each SNR. Notably, there are still significant differences in the average SDs 
under the two hypotheses. With the increase of SNR, the average SDs both decrease, and then 
gradually become fixed values. 

The aforementioned phenomenon can be explained by the majorization relationship of the 
partial sum of the PVV after truncation under the two hypotheses. The partial sums of the PVV 
after truncation under the two hypotheses are plotted in Fig. 10. the truncation of the SS does 
not change the majorization relationship of the PVV under two hypotheses, and the SD feature 
of TSS can be used to classify BPSK and QPSK modulation signals with a low computational 
cost. 
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Fig. 10. Partial sums of PVV from TSS. 

3.4 Summary of the proposed algorithm 

The summary of the proposed algorithm is described in detail as follows. 
Algorithm 1: BPSK/QPSK recognition algorithm based on TSS and SD 
Input: Original observed signal ( )x n ，length of the rectangular window D，number of 
the vertices of a graph 0N , and threshold λ . 
Output: recognition result. 
Procedure: 
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1) Calculate SS Y( )k  by using (7); 

2) Obtain truncated sequence ( )TSSY k  by using (14); 

3) Convert ( )TSSY k  to graph ( , )Y Y YG E V  with 0N  vertices by SGC; 

4) Compute SD F  of ( , )Y Y YG E V ; 

5)Determine the modulation type of the signal ( )x n   by comparing F   with the 
threshold λ  as follows: if F λ< , BPSK is chosen; else, QPSK is chosen. 

 
Table 2. Computational complexity of the proposed algorithm. 

Main operations Real number 
addition times 

Real number 
multiplication times 

Decision or 
comparison times 

Computation of SS 23N Nlog N+  23 2N Nlog N+  0 

SGC processing D D 0 ( 1) / 2DN D D+ −  

 
Regarding the computational complexity of the proposed algorithm, its principal operations 

include computation of SS and SGC. The computational complexity is listed in Table 2. 
According to the table, the total algorithm complexity is the order of 2

2 0O( log + + )NN N DN D+ . 

4. SIMULATION RESULTS 

4.1 Simulation setup 

In this section, the proposed signal recognition scheme is evaluated via Monte Carlo 
simulations. Unless otherwise stated, the parameters used in the simulation are set as follows. 
The coding scheme of the BPSK signal is [1,1,1,1,1,0,0,1,1,0,1,0,1], and that of the QPSK 
signal is [0,1,2,3,1,3,1,3,1,3,2,1,0], with the sampling interval 0.01t∆ = µs, carrier frequency 

0 20.76f =  MHz, code width 640cT =  ns, sample size 1024N =  , and initial phase 4θ π=  . 
The SNR was defined as 2 2

1010 log / (2 )A σ   in dB, the number of the vertices on the 
constructed graph is 0 10N = , window width is 100D = , and the predefined threshold 10λ = . 
In total, we performed 1000 trials for each condition under the two hypotheses. 

4.2 Performance Evaluation 

Fig. 11 shows the recognition accuracy of BPSK / QPSK signals under different SNRs. When 
the SNR is greater than or equal to -4 dB, the recognition accuracy of the BPSK signal exceeds 
95%. However, the recognition accuracy of the QPSK signal is typically maintained at a rate 
of 100% within the range of SNRs selected. The result can be explained as follows. When the 
SNR is high, the distance between the SD features under the two hypotheses are consistently 
distinct and the recognition performance approaches 100%. However, when the SNR 
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decreases, even though the distance of the SD enlarges, its variance also becomes larger, which 
results in a decline in performance. 
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Fig. 11. Recognition performance of the proposed algorithm under different SNRs. 

4.3 Effect of the sample size  

Fig. 12 presents the average recognition accuracy of the proposed algorithm under different 
sample sizes. When the SNR is lower, for the same SNR, the average recognition accuracy 
increases with an increase in the sample size. When the SNR reaches -2 dB, the average 
recognition accuracies are close to 100%. The result can be explained as follows. Generally, 
an increase in the sample size of the signal in the time domain is equivalent to an increase in 
the SNR of TSS, provided that the points of the FFT are set as the sample size. 
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Fig. 12. Recognition performance of the proposed algorithm under different sample sizes. 

4.4 Effect of initial phase 

Fig. 13 depicts the average recognition accuracy of the proposed algorithm under different 
initial phase conditions. It can be observed that the change of the initial phase of the signal has 
no effect on the average recognition accuracy, primarily because the SS or TSS of BPSK / 
QPSK signal is the magnitude of the spectrum, and is unrelated to the initial phase. 
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Fig. 13. Recognition performance of the proposed algorithm under different initial phases 
 

4.5 Effect of window width 

Fig. 14 shows the average recognition accuracy of the proposed algorithm under different 
window widths used in the truncation. It can be observed from the figure that the significantly 
smaller widths result in reducing the recognition performance. A small window width results 
in the loss of some important spectrum components of SS and disables the SD feature, which 
makes it unable to discriminate the modulation types. In contrast, a significantly large window 
causes high computational costs. However, if a moderate window length is selected: for 
example, greater than 25, the performance is robust when the SNR is greater than -4 dB. Hence, 
the width of the window selected in truncation should be moderated by concisely balancing 
the recognition performance and computational complexity. 
 

-6 -4 -2 0 2 4 6 8

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 

 

Av
er

ag
e 

re
co

gn
iti

on
 a

cc
ur

ac
y

SNR(dB)

 D=9
 D=25
 D=50
 D=100

 
Fig. 14. Recognition performance of the proposed algorithm under different window widths. 
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4.6 Effect of the number of vertices on the graphs 
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Fig. 15. Recognition performance of the proposed algorithm under different numbers of vertices. 
 

Fig. 15 depicts the function between the number of vertices and recognition performance. On 
the one hand, it can be observed that when the SNR is high: for example, SNR>-2 dB, the 
performance is almost independent of the number of vertices. To be more specific, in such 
cases, the SD of the graph under two hypotheses are both with a lower variance, and have a 
distinct distance between each other. On the other hand, when the SNR is lower than -2 dB, a 
moderate number of vertices has optimal performance. A plausible explanation is that a 
significantly small or large numbers of vertices decrease or increase the value of the SD under 
the two hypotheses, respectively. Moreover, the distinguishability of features further decreases 
when combined with the influence of noise, thereby deteriorating the performance under an 
inadequate number of vertices. 

4.7 Performance comparison with existing methods 
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Fig. 16. Recognition performance comparisons between the proposed algorithm and the existing 
algorithms under different SNRs. 

 
Fig. 16 illustrates the recognition performance comparisons among the proposed algorithm 
(denoted as SG), the second largest eigenvalue of Laplacian matrix-based algorithm in [15] 
(denoted as SLELM whose scheme is shown in Appendix), the complete graph detection-
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based algorithm in [19] (denoted as CGD), the cyclostationary test-based algorithm in [7] 
(denoted as CST), the average likelihood ratio test algorithm in [22, 23] (denoted as ALRT), 
the forth order cumulant based on neural network algorithm in [22, 24] (denoted as 
CUM4+NN), and the convolutional neural network algorithm in [22, 25] (denoted as CNN). 
Here, the simulation conditions are set as those defined in section 2.2.6 in the literature [22]. 
For SG, the window width was set to 40. For SLELM, the number of modified points for SS 
was set to 7, and the number of vertices was set to 10. For CGD, the samples were normalized 
via Rayleigh distribution, and the number of vertices was set to 10. As expected, the ALRT 
algorithm exhibited the best performance. In general, the upper bound of the modulation 
recognition classification problem is obtained by the ALRT algorithm, which requires a priori 
information of the observed signal and accordingly has a limitation in practical contexts. 
Moreover, CNN-based and CUM4+NN-based algorithms perform better than the proposed 
algorithm. However, those algorithms severely depend on large amounts of training sets, 
concise SNR estimation, and matching operations, which are difficult in non-cooperative 
signal processing contexts. Importantly, the proposed algorithm is superior to the other three 
algorithms that do not rely on training sets. 

 
Table 3. Comparison of the operating times between the proposed algorithm and existing algorithms. 

Operating times (ms) SLELM  CGD  SG CST ALRT CNN CUM4+NN 
Training times  - - - - - 29148 54930 
Testing times 6.14 9.02 5.65 8.37 7.33 0.76 0.27 
Total times 6.14 9.02 5.65 8.37 7.33 29148.76 54930.27 

 
Table 3 lists the average operating time comparisons between the proposed algorithm and 

other existing algorithms by conducting a complete identification trail. The hardware platform 
used in the simulation trial Included an Intel (R) core (TM) i7-8550u CPU (1.80GHz) 
processor, and MATLAB R2021a was used as a software platform to develop and execute the 
simulations. It can be observed that under identical conditions, if the training process is 
considered, the operation times of the algorithms based on NN or CNN are much higher than 
those of other algorithms. Among SLELM, CGD, SG, CST, and ALRT algorithms, the 
proposed algorithm has the shortest operation time. Considering the two vital factors of 
recognition performance and operation time, the proposed algorithm has much higher 
application value in situations where there is a lack of training samples, and a prior information 
of the signals and channels. Moreover, it is required for high real-time processing. In general, 
the proposed algorithm enhances the recognition performance of the graph-based algorithms, 
which is beneficial to extending the application for graph-based signal processing. 

5 Conclusions 

An innovative graph-based modulation classification of BPSK and QPSK signals is proposed 
in this study. TSS is utilized as an input fed to the SGC to construct an indirect graph. 
Subsequently, the SD of the graph is extracted as a classification feature to distinguish the 
modulation signals. In this study, large energy line spectrum was reserved by introducing TSS, 
which results in enhancing the processing SNR of the input fed to the SGC while reducing the 
computational complexity of signal-to-graph transformation. Simulation results indicated that 
compared with existing algorithms, the proposed algorithm achieves a satisfactory recognition 
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performance in lower SNRs without requiring any prior information of the signal and noise. 
As this method improves the efficiencies and recognition accuracies of existing graph-based 
algorithms, it can be applied in signal identification contexts that requiring real-time 
processing. However, the proposed algorithm has several limitations: for instance, the 
selection for the number of the vertices on graphs cannot be obtained analytically. In the future, 
we will attempt to develop new modulation recognition algorithms by combining the graph 
signal representation and deep learning framework to enhance the performance, which can be 
used in the context of multi-class signal classification, when the training samples are easy to 
obtain. 

Appendix 

SLELM Algorithm inspired by [15] is given below. 
SLELM Algorithm : BPSK/QPSK recognition algorithm based on second largest 
eigenvalue of graph  
Input: the original observed signal ( )x n , vertices number of graph 0N , correction 
points M , and threshold 0λ . 
Output: recognition result. 
Procedure: 
1) Calculate SS ( )Y k  using (7); 
2) Obtain the MSS using 

 max max
0

0,
( ) 2 2

( ), otherwise

M Mk k k
Y k

X k

 − ≤ ≤ += 


, 

where maxk  represents the position of the peak of ( )Y k . 
3) Convert 0 ( )Y k  to a graph 

0 0 0
( , )Y Y YG E V  with 0N  vertices; 

4) Compute the second largest eigenvalue of the Laplacian matrix of graph 

0 0 0
( , )Y Y YG E V , which is denoted by 0F ; 

5) Classify the signals ( )x n  by comparing F0 with the threshold 0λ , as follows: 

if 0 0F λ< , BPSK is chosen; else, QPSK is chosen. 
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